
An introduction to Score-based Generative Models

Lecture 1: Introduction to generative models

Giovanni Conforti, Alain Durmus

École polytechnique

with the help of Valentin De Bortoli, Marta Gentiloni-Silveri, Emmanuel Gobet, Yazid

Janati, Éric Moulines, Maxence Noble, Tom Sander, and many others...

February 19, 2024

1 / 63

Outline of the course

Introduction / Motivations

Minimum distance estimation (MDE)

Normalizing flows

Energy based models – Maximum entropy methods

2 / 63

Introduction / Motivation

Introduction to generative models

Let X ⊂ Rp endowed with X = X ∩ B(Rd).

• Input

Data {x i}Ni=1 : N i.i.d. observations from an unknown µ⋆ ∈ P(X).

Notation: P(X) space of probability measures on (X,X).

• Output

New samples from µ⋆

Consider {µθ : θ ∈ Θ}, Θ ⊂ Rd .

We must be able to sample from µθ.

Goal: learn θ which fits the data {x i}Ni=1.

Two approaches: stochastic/statistical approach and transformation

approach.

3 / 63

Introduction to generative models

• Input

Data {x i}Ni=1 : N

i.i.d. observations.

• New samples from µ⋆

Consider {µθ : θ ∈ Θ}, Θ ⊂ Rd .

We must be able to sample from

µθ.

Goal: learn θ which fits the data

{x i}Ni=1.

Credit: Tomczak (2022)

The stochastic/statistical approach: construct µθ which has an

explicit density pθ with respect to a dominating measure λ.

pθ not necessarily tractable!

In general λ = Leb.

4 / 63

Introduction to generative models

• Input

Data {x i}Ni=1 : N

i.i.d. observations.

• Output

New samples from µ⋆

Consider {µθ : θ ∈ Θ}, Θ ⊂ Rd .

We must be able to sample from

µθ.

Goal: learn θ which fits the data

{x i}Ni=1.

Credit: https://openai.com/blog/

generative-models/

The transformation/flows approach: µθ = Tθ♯ν;

1. for a family of transformations {Tθ : θ ∈ Θ};
2. ν is a reference measure we should be able to sample (samplable).

Here µθ may not admit an explicit density.

5 / 63

https://openai.com/blog/generative-models/
https://openai.com/blog/generative-models/

Introduction to generative models

Let X ⊂ Rp endowed with X = X ∩ B(Rd).

• Input

Data {x i}Ni=1 : N i.i.d. observations from an unknown µ⋆ ∈ P(X).

• Output

New samples from µ⋆

Consider {µθ : θ ∈ Θ}, Θ ⊂ Rd .

We must be able to sample from µθ.

Goal: learn θ which fits the data {x i}Ni=1.

Question: how to fit the data once {µθ : θ ∈ Θ}, Θ ⊂ Rd chosen?

6 / 63

A first useless application

https://thesecatsdonotexist.com/

7 / 63

https://thesecatsdonotexist.com/

Foundation models, deep-learning priors I

We consider a linear inverse problem:

y = Ax + G .

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

8 / 63

Foundation models, deep-learning priors II

We consider a linear inverse problem:

y = Ax + G .

One “simple” option:

minimize x 7→ ∥Ax − y∥2 − log p⋆(x) ,

the term ∥Ax − y∥2enforces the constraints associated with the

observation y ;

the second term: p⋆(x) should be able quantify how “plausible” x is.

9 / 63

Foundation models, deep-learning priors III

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

10 / 63

Conditional generative models

In many applications, we are not only interested in sampling from a single

distribution µ⋆...

Goal: sample from conditional distributions {µ⋆(·|y) : y ∈ Y}

Simple/complex adaptations of non-conditioned generative models

Not discussed in this course...

11 / 63

Text-to-image generation

12 / 63

Captioning

True: a picture of skiers skiing on the snow
CAP: skiing in the french alps
DP-CAP: skiing in the snow

True: a dog wearing a scarf and shirt on a leash
CAP: a dog dressed as a cat and a cat

DP-CAP: a dog is sitting on a leash

True: three zebras grazing in a grassy area near shrubs
CAP: zebras grazing in the serengeti
DP-CAP: two zebras grazing in a field

True: blue and white bird standing on a branch
CAP: osprey perched on a dead branch

DP-CAP: bald eagle perched on a branch

True: a person walking along the beach with a surfboard
CAP: surfer walking on the beach

DP-CAP: a man walking on the beach with a dog

True: a herd of cows lay down on some grass
CAP: cows resting in the grass

DP-CAP: a herd of cows grazing in a field

True: a cat sitting on a chair looking down.
CAP: cat playing in the leaves

DP-CAP: a white cat sitting on a bench

True: a cat wearing a hat on its head
CAP: cat wearing a hat

DP-CAP: cat wearing a pink hat

True: a woman is holding a slice of red and white cake
CAP: woman holding a plate of cake

DP-CAP: a woman holding a plate of red velvet cake

True: a bunch of fruits and vegetables for sale on disp
CAP: fruit and vegetables are displayed at a supermark

DP-CAP: how to store fruits and vegetables

True: a kitty cat lies down on a computer keyboard.
CAP: cat lying on laptop

DP-CAP: a cat sits on a computer keyboard.

True: a herd of sheep grazing in a field.
CAP: sheep grazing in a field

DP-CAP: sheep grazing in the meadow

13 / 63

Minimum Distance Estimation

Minimum Distance Estimation Wolfowitz (1957)

• Input For X ⊂ Rd .

Data {xi}Ni=1 : N i.i.d. observations from µ⋆ ∈ P(X) unknown

• Output

New samples from µ⋆

Consider a parametric family of distributions {µθ : θ ∈ Θ}.

Minimum distance estimation :

minimize θ 7→ D(µθ|µ⋆) where D is a divergence/metric over the

space of probability measure on X.

Sample a new observation from µθ⋆ .

14 / 63

Metric/distance on P(X)

15 / 63

Divergence over P(X)

A divergence on P(X), is a function D : P(X)2 → R+ which satisfies the

most important1 axiom of a distance: for µ, ν two probability measures

D(µ|ν) = 0 if and only if µ = ν .

Any distance on P(X) is a divergence.

Do not satisfy the other axioms of a distance

Important example: the Kullback Leibler and the Fisher information.

1from the ML viewpoint...

16 / 63

Minimum Distance Estimation: an ideal?

• Input For X ⊂ Rd .

Data {xi}Ni=1 : N i.i.d. observations from µ⋆ ∈ P(X) unknown

• Output

New samples from µ⋆

Consider a parametric family of distributions {µθ : θ ∈ Θ}.

Minimum distance estimation :

minimize θ 7→ D(µθ|µ⋆) or D(µθ|µ̂N) where D is a divergence over

the space of probability measure on X.

Sample a new observation from µθ⋆ .

17 / 63

MDE: challenges

Minimum distance estimation :

minimize θ 7→ D(µθ|µ⋆) or D(µθ|µ̂N) where D is a divergence over

the space of probability measure on X.

Sample a new observation from µθ⋆ .

Some problems appear:

Choice

for the family {µθ : θ ∈ Θ}?
for the divergence D?

Minimization for θ 7→ D(µθ|µ⋆)?

18 / 63

MDE: challenges

In the infinite case Card(X) = ∞, we can still use µ̂N .

From a statistical viewpoint, it is hard to obtain a better estimator

than the empirical measure: for some class of measure M0 and

divergence D0, we have there exists α > 0, C1,C2 > 0, for any n ∈ N∗,

C1n
−α ≤ sup

µ∈M0

inf
ν̂N :XN→M0

D0(ν̂N , µ) , D0(µ̂N , µ) ≤ C2n
−α .

However, sample from µ̂N are just training samples: you want to avoid

such degenerate situations and introduce some diversity.

The notion of diversity is still not well-defined and hard to evaluate

empirically...

19 / 63

Maximum likelihood estimation

Maximum likelihood estimation

Consider the case Θ ⊂ Rd .

Choice for the family {µθ : θ ∈ Θ}?

{µθ : µθ ≪ λ , pθ = dµθ/dλ} .

Example:

pθ : density w.r.t. Leb of N(m,σ2) .

We should be able to sample from pθ for any θ...

We leave explicit choice of {pθ : θ ∈ Θ} for the next section...

Choice for the divergence D?

20 / 63

Maximum likelihood estimation

Consider the case Θ ⊂ Rd .

Choice for the family {µθ : θ ∈ Θ}?

{µθ : µθ ≪ λ , pθ = dµθ/dλ} .

Choice for the divergence D?

D = KL: problem KL (µθ ∥ µ̂N) = ∞...

Recall that ideally if D = KL, we would like to minimize

KL (µ⋆ ∥µθ) = −
∫

dµ⋆ log

(
dµθ
dµ⋆

)
.

This is equivalent to maximize if µ⋆ ≪ λ,

θ 7→
∫

dµ⋆ log

(
dµθ
dλ

)
.

Solution: replace the integral by an empirical version

θ 7→ N−1
N∑
i=1

log pθ(xi) .

21 / 63

Density estimation

How to optimize?

θ 7→
∫

dµ⋆ log

(
dµθ
dLeb

)
or θ 7→

N∑
i=1

log pθ(xi) . (1)

Stochastic gradient descent:

θk+1 = θk + γk+1

∑
xi∈Bk+1

∇θ[log p(·)(xi)](θk) ,

where

(Bk)k is a sequence of random batch of data points ,

(γk)k is a sequence of stepsizes/learning rates .

Under some assumptions, it can be shown that almost surely (θk)k∈N

converges to some minimizers of (1).

22 / 63

Density estimation

Choice for the family {µθ : θ ∈ Θ}?
{µθ : µθ ≪ Leb , pθ = dµθ/dLeb}.

First solution:

µθ = (Tθ)♯ν0 ,

where

ν0 ∈ P(Rp) with density q0 , Tθ : Rp → Rp

What people thought it was hard:

find {Tθ : θ ∈ Θ} such that θ 7→
N∑
i=1

log pθ(xi) easy to optimize...

It turns out that such constructions are now possible using neural

networks, normalizing flows Rezende and Mohamed (2015)!

23 / 63

Normalizing flows

Simple Prior to Complex Data Distributions

Desirable properties of any model distribution pθ:

Easy-to-evaluate, closed form density (useful for training)

Easy-to-sample (useful for generation)

Many simple distributions satisfy the above properties e.g., Gaussian,

uniform distributions

Unfortunately, data distributions are more complex (multi-modal)

Key idea behind flow models: Map simple distributions (easy to sample

and evaluate densities) to complex distributions through an invertible

transformation.
24 / 63

Normalizing flow models

In a normalizing flow model, the mapping between Z and X , given by

Tθ : Rp 7→ Rp, is deterministic and invertible such that X = Tθ(Z) and

Z = T←θ (X).

Using the d-dimensional change of variable we have for any

f ∈ Cc(Rd ,R)

Eθ [f (X)] =

The marginal likelihood pθ(x) is given by

pθ(x) =

Note: we assume that Tθ is a diffeomorphism (not necessary, one can use

the co-area/area formula ?)

25 / 63

A Flow of transformations

Normalizing: change of variables gives a normalized density after applying

an invertible transformation.

Flow: invertible transformations can be composed with each other

T1:m
θ (z0) = Tm

θ ◦ · · · ◦ T1
θ (z0) = Tm

θ

(
Tm−1
θ

(
· · ·

(
T1
θ (z0)

)))
.

Start with a simple distribution for z0 (e.g., Gaussian).

Apply a sequence of M invertible transformations

pθ(x) =

26 / 63

Planar flows Rezende and Mohamed (2015)

Base distribution: Gaussian

Base distribution: Uniform

10 planar transformations can transform simple distributions into a more

complex one

27 / 63

Learning and inference

Learning via maximum likelihood over the dataset {x i}

Hence, maximizing the log-likelihood is equivalent to maximizing

ℓ(θ) = N−1
N∑
i=1

log(p(T←θ (x i))) + log(| det Jacθ(T←θ (x i))|) .

Exact likelihood evaluation via inverse tranformation x 7→ T←θ (x) and

change of variables formula

Sampling via forward transformation z 7→ Tθ(z):

Z ∼ ν0 , X = Tθ(Z) .

Latent representations inferred via inverse (normalizing) transformation

(no inference network required!)

z = T←θ (x) .

28 / 63

Desiderata for flow models

Simple prior ν0 (with density q0) that allows for efficient sampling and

tractable likelihood evaluation.

E.g., isotropic Gaussian

Invertible transformations with tractable evaluation

Likelihood evaluation requires efficient evaluation of T←θ

Sampling requires efficient evaluation of Tθ

29 / 63

Desiderata for flow models

Computing likelihoods also requires the evaluation of determinants of

p × p Jacobian matrices, where p is the data dimensionality

Computing the determinant for an p × p matrix is O
(
p3
)
: prohibitively

expensive within a learning loop!

Key idea: Choose tranformations so that the resulting Jacobian matrix has

special structure.

For example, the determinant of a triangular matrix is the product of the

diagonal entries, i.e., an O(p) operation.

30 / 63

Planar flows Rezende and Mohamed (2015)

Invertible transformation

Tθ(z) = z + uh
(
wTz + b

)
parameterized by θ = (w , u, b) where h is a non-linearity.

Absolute value of the determinant of the Jacobian is given by

|det JacθTθ(z)| =

Need to restrict parameters and non-linearity for the mapping to be

invertible. For example, h = tanh and h′
(
wTz + b

)
uTw ≥ −1.

No closed expression for the inverse.

31 / 63

Designing invertible transformations

NICE or Nonlinear Independent Components Estimation (Dinh et al.,

2014) composes two kinds of invertible transformations: additive coupling

layers and rescaling layers

Real-NVP (Dinh et al., 2017)

Inverse Autoregressive Flow (Kingma et al., 2016) - Masked

Autoregressive Flow (Papamakarios et al., 2017)

I-resnet (Behrmann et al, 2018)

Glow (Kingma et al, 2018)

MintNet (Song et al., 2019)

And many more...

32 / 63

NICE and Real-NVP

33 / 63

NICE Nonlinear Independent Components Estimation ?

Partition the variables z into two disjoint subsets, say z1:r and zr+1:p for

any 1 ≤ r < p.

Forward mapping Tθ :

Tθ(z)1:r = z1:r , Tθ(z)r+1:p = zr+1:p + mθ (z1:r) ,

mθ is a neural network with parameters θ and r input units, and p − r

output units.

Inverse mapping

Jacobian of forward mapping:

34 / 63

NICE Nonlinear Independent Components Estimation ?

Additive coupling layers are composed together (with arbitrary partitions

of variables in each layer).

Final layer of NICE applies a rescaling transformation (linear diagonal

flow).

Forward mapping Tθ :

Tθ(z)i = sizi .

where si > 0 is the scaling factor for the i-th dimension.

θ = {si}pi=1 here

Inverse mapping

Jacobian of forward mapping:

35 / 63

Samples generated by NICE

Limitation: too much volume preserving...

36 / 63

Real-NVP: Non-volume preserving extension of NICE ?

Forward mapping Tθ:

Tθ(z)1:r = z1:r , Tθ(z)r+1:p = zr+1:p ⊙ exp (αθ (z1:r)) + mθ (z1:r)

mθ and αθ are both neural networks with parameters θ, r input units,

and p − r output units (⊙ denotes elementwise product)

Inverse mapping

Jacobian of forward mapping

Non-volume preserving transformation in general since determinant can be

less than or greater than 1.

37 / 63

Samples from Real-NVP

38 / 63

Latent space interpolations via Real-NVP

Using with four validation examples z (1), z (2), z (3), z (4), define interpolated z as:

z = cosϕ
(
z (1) cosϕ

′
+ z (2) sinϕ

′)
+ sinϕ

(
z (3) cosϕ

′
+ z (4) sinϕ

′)
parameterized by ϕ and ϕ

′
.

39 / 63

A detour by autoregressive models

Another generative modeling approach: autoregressive models

▶ Masked Autoencoder for Distribution Estimation (autoregressive

autoencoder), ?.
▶ PixelRNN (autoregressive LSTM), ?.
▶ Both models are trained by maximizing the log-likelihood.

Both models assume the following

raster-scan decomposition.

pθ(x) =
∏p

i=1 pθ(xi |x1:i−1) .

Problems:

▶ As many predicitions as the

dimension.
▶ Can be parallelized for training

but not for sampling.

Figure 1: Raster scan order. Image

extracted from ?.

40 / 63

Continuous Autoregressive models as flow models

Consider a Gaussian autoregressive model:

pθ(x) =
∏p

i=1 pθ(xi |x1:i−1) .

such that pθ (xi | x1:i−1) = N
(
mi (x1, · · · , xi−1) , exp (αi (x1, · · · , xi−1))

2).
Here, mi = mθi ,i and αi = αθi ,i are NN for i > 1 and constants for i = 1.

Sampler for this model:

Sample zi ∼ N(0, 1) for i = 1, · · · , n and set z = z1:p.

Let x1 = Tθ(z)1 = exp (α1) z1 + m1. Compute m2 (x1) , α2 (x1)

Let xi = Tθ(z)i = exp (αi (x1:i−1)) zi + mi (x1:i−1). Compute

mi+1 (x1:i) , αi+1 (x1:i), for i = 2 . . . p.

Flow interpretation: transforms samples from the standard Gaussian

(z1, z2, . . . , zn) to those generated from the model (x1, x2, . . . , xn) via

invertible transformations (parameterized by mi , αi).

41 / 63

Masked Autoregressive Flow (MAF) ?

Credit: Eric Jang’s blog

Forward mapping from Tθ:

Let x1 = Tθ(z)1 = exp (α1) z1 + m1. Compute m2 (x1) , α2 (x1)

Let xi = Tθ(z)i = exp (αi (x1:i−1)) zi + mi (x1:i−1). Compute

mi+1 (x1:i) , αi+1 (x1:i), for i = 2 . . . p.

Sampling is sequential and slow (like autoregressive): O(p) time

42 / 63

Masked Autoregressive Flow (MAF)

Credit: Eric Jang’s blog

Inverse mapping from T←θ :

Jacobian is lower diagonal, hence efficient determinant computation

Likelihood evaluation is easy and parallelizable (like MADE)

Layers with different variable orderings can be stacked

43 / 63

The autoregressive layer

? introduces the autoregressive layer:

▶ z = {zi}pi=1

▶ σi (z1:i−1) = sigmoid(αi (z1:i−1))
▶ Forward transform Tθ(z)i = σi (x1:i−1)zi + (1− σi (x1:i−1))mi (x1:i−1) with

x1:i−1 = Tθ(z)1:i−1 .

▶ Reverse transform

▶ Log-Jacobian

The Jacobian is triangular (easy computation of the determinant).

Parameterization with the sigmoid is numerically stable (inspired by LSTM

?).

Between each autoregressive layer the ordering is reversed.

More involved autoregressive models in practice:

▶ Convolutional autoregressive models ?.

44 / 63

Sampling vs estimation for MAF

MAF:

Sampling O(p);

Parallel estimation O(1).

Can we have a sampling in O(1)?

45 / 63

Inverse Autoregressive Flow (IAF)

Credit: Eric Jang’s blog

Forward mapping from Tθ (parallel).

Sample zi ∼ N(0, 1) for i = 1, · · · , p and set z = z1:p.

Compute all mi (z1:i−1), αi (z1:i−1) (can be done in parallel)

Again mi = mθi ,i and αi = αθi ,i are NN for i > 1 and constants for i = 1.

Let x1 = Tθ(z)1 = exp (α1) z1 + m1

Let xi = Tθ(z)i = exp (αi (z1:i−1)) zi + mi (z1:i−1) for i > 1

Sampling is fast now (in parallel)!

Note: Fast to evaluate likelihoods of a generated point using

(z1, z2, . . . , zn), just Gaussian pθ(x) = pθ(Tθ(z)) =

46 / 63

Inverse Autoregressive Flow (IAF)

Inverse mapping from T←θ (sequential).

Let z1 = Tθ(x)
←
1 = exp (−α1) (z1 − m1). Compute m2 (z1) , α2 (z1)

Let zi = Tθ(x)
←
i = exp (−αi (x1:i−1)) (zi − mi (x1:i−1)). Compute

mi+1 (z1:i) , αi+1 (z1:i), for i = 2 . . . p.

Sampling is sequential and slow (like autoregressive): O(p) time

Fast to sample from, slow to evaluate likelihoods of data points (train)

47 / 63

IAF is inverse of MAF

Credit: Eric Jang’s blog

Inverse pass of MAF (left) vs. Forward pass of IAF (right)

Interchanging z and x in the inverse transformation of MAF gives the

forward transformation of IAF

Similarly, forward transformation of MAF is inverse transformation of IAF

48 / 63

IAF vs. MAF

Computational tradeoffs

MAF: Fast likelihood evaluation, slow sampling

IAF: Fast sampling, slow likelihood evaluation

MAF more suited for training based on MLE, density estimation

IAF more suited for real-time generation

Can we get the best of both worlds?

49 / 63

Parallel Wavenet

Two part training with a teacher and student model

Teacher is parameterized by MAF. Teacher can be efficiently trained via

MLE

Once teacher is trained, initialize a student model parameterized by IAF.

Student model cannot efficiently evaluate density for external datapoints

but allows for efficient sampling

Key observation: IAF can also efficiently evaluate densities of its own

generations

50 / 63

Parallel Wavenet

Given a teacher with density tθ parametrized by θ (MAF)

Probability density distillation: student distribution is trained to minimize

the KL divergence between student sψ, parametrized by ψ (IAF), and

teacher tθ:

ψ 7→
∫

sψ(x) log
sψ(x)

tθ(x)
dx =

∫
q0(z) log

sψ(Tψ(z))

tθ(Tψ(z))
dx .

Evaluating and optimizing Monte Carlo estimates of this objective

N−1
N∑
i=1

log
sψ(Tψ(Z

i))

tθ(Tψ(Z i))

This requires:

Forward transformation Tψ (IAF)

Density of x assigned by student model, sψ

Density of x assigned by teacher model (MAF), tθ

All operations above can be implemented efficiently

51 / 63

Parallel Wavenet

Training

Step 1: Train teacher model (MAF) via MLE

Step 2: Train student model (IAF) to minimize KL divergence with teacher

Test-time: Use student model for testing

52 / 63

Energy-based models

Maximum likelihood estimation (reminder...)

Consider the case Θ ⊂ Rd .

Choice for the family {µθ : θ ∈ Θ}?

{µθ : µθ ≪ λ , pθ = dµθ/dλ} .

Choice for the divergence D?

D = KL: problem KL (µθ ∥ µ̂N) = ∞...

Recall that ideally if D = KL, we would like to minimize

KL (µ⋆ ∥µθ) = −
∫

dµ⋆ log

(
dµθ
dµ⋆

)
.

This is equivalent to maximize if µ⋆ ≪ λ,

θ 7→
∫

dµ⋆ log

(
dµθ
dλ

)
.

Solution: replace the integral by an empirical version

θ 7→ N−1
N∑
i=1

log pθ(xi) .

53 / 63

EBMs rationale

Consider the case λ = Leb and X = Rd .

EBM consists in defining a family {µθ : θ ∈ Θ} directly from a family of

potential/energy functions {Uθ : θ ∈ Θ}: for x ∈ Rd

pθ(x) = (dµθ/dLeb)(x) = exp[−Uθ(x)]/Z(θ) ,

Z(θ) =
∫
Rd exp[−Uθ(x̃)]dx̃ .

Uθ is typically a neural network (θ ∈ Θ is a set of parameters).

The likelihood is then:

ℓ̂N(θ) = −(1/N)
∑N

k=1 Uθ(x
k)− log Z(θ) .

The first term in the right-hand side has an explicit gradient (computed

by auto-diff in practice...).

The second term unfortunately is untractable... but we can write its

gradient w.r.t. θ as integral w.r.t. pθ.

54 / 63

The Fisher and Louis identities

Proposition 1
Under appropriate conditions, the following identities hold:

∇θ log Z(θ) =?

∇2
θ log Z(θ) =? .

55 / 63

The Fisher and Louis identities

Proposition 2
Under appropriate conditions, the following identities hold:

∇θ log Z(θ) = −
∫

∇θUθ(x)pθ(x)Leb(dx) ,

∇2
θ log Z(θ) = −

∫
∇2
θUθ(x)pθ(x)Leb(dx)

+

∫
[∇θŪθ(x)∇θŪθ(x)

T]pθ(x)Leb(dx) ,

∇θŪθ(x) = ∇θUθ(x)−
∫

∇θUθ(x)pθ(x)dx .

56 / 63

Training EBMs

Maximizing the likelihood

ℓ̂N(θ) = −(1/N)
∑N

k=1 Uθ(x
k)− log Z(θ) .

Taking the gradient of the log-partition using Fisher identity:

log Z(θ) = −
∫
∇θUθ(x)pθ(x)dx .

Taking the gradient of the empirical likelihood ℓ̂N , we get

∇θ ℓ̂N(θ) = −(1/N)
N∑

k=1

∇θUθ(x
k) + µθ[∇θUθ] .

We take only a mini-batch of the first term at each iterations of your

favorite optimization algorithm.

At equilibrium θ⋆, we cannot distinguish the expectation of ∇θUθ⋆ w.r.t.

µ⋆ and µθ⋆ .

57 / 63

Training EBMs

Taking the gradient of the empirical likelihood ℓ̂N , we get

∇θ ℓ̂N(θ) = −(1/N)
N∑

k=1

∇θUθ(x
k) + µθ[∇θUθ] .

We take only a mini-batch of the first term at each iterations of your

favorite optimization algorithm.

At equilibrium θ⋆, we cannot distinguish the expectation of ∇θUθ⋆ w.r.t.

µ⋆ and µθ⋆ .

Approximating µθ[∇θUθ], requires statistical sampling.

For this, we consider a family of MCMC algorithm {Pθ : θ ∈ Θ} such that

Pθ targets µθ for any θ.

58 / 63

Langevin Monte Carlo for training

Choice for family of MCMC algorithm {Pθ : θ ∈ Θ}:
▶ Markov chains targeting (approximately) µθ.
▶ Unadjusted Langevin Algorithm

Xk+1 = Xk − γ∇xUθ(Xk) +
√

2γZk+1 ,

▶ γ is a stepsize, ∇xUθ is computed with backpropagation.

In practice:

▶ We add some regularization to the contrastive divergence.
▶ We consider short runs of MCMC.
▶ The initialization of the MCMC is important: warm-start (persistent

contrastive divergence, see Tieleman (2008)) or not (see Nijkamp

et al. (2019)).
▶ Tutorial with Pytorch implementation based on Du and Mordatch

(2019).

59 / 63

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial8/Deep_Energy_Models.html

EBM training algorithm using ULA

Algorithm 1 Training of EBM

1: Input: niter, K , µ̂, Nbatch, γ, δ, α, θ0.

2: B ̸= ∅.
3: for n = 0 to niter − 1 do

4: Sample X+,1:Nbatch
n = {X+,k

n }Nbatch
k=1 i.i.d. from {x i}Ni=1.

5: if B is not empty then

6: Sample X 0,1:Nbatch
n = {X 0,k

n }Nbatch
k=1 i.i.d. from (1− α)B + αN(0, Id).

7: else

8: Sample X 0,1:Nbatch
n = {X 0,k

n }Nbatch
k=1 i.i.d. from N(0, Id).

9: end if

10: for k = 0 to K − 1 do

11: X k+1,1:Nbatch
n = X k,1:Nbatch

n + γ∇xUθn (X
k,1:Nbatch
n) +

√
2γZ k+1,1:Nbatch

n .

12: end for

13: X−,1:Nbatch
n = XK ,1:Nbatch

n .

14: θn+1 = θn − (δ/Nbatch)
∑Nbatch
ℓ=1 {∇θUθn (X

+,ℓ
n)−∇θUθn (X

−,ℓ
n)}.

15: B = X−,1:Nbatch
n .

16: end for

60 / 63

Example-based synthesis

61 / 63

Link with example-based synthesis

Different density models:

▶ In Energy-Based Models: pθ(x) = exp[−Uθ(x)]/Z(θ).
▶ In Maximum Entropy Models:

pθ(x) = exp[−⟨θ, f (x)− f (x0)⟩]/Z(θ).

Training losses:

▶ In Energy-Based Models:

∇θ ℓ̂N(θ) = −N−1 ∑N
i=1 ∇θUθ(xi) + µθ[∇θUθ].

▶ In Maximum Entropy Models: ∇θZ(θ) = −f (x0) + µθ[∇θUθ].

Some key differences

▶ µ̂ is replaced by δx0 . Only one example to train the model.
▶ In EBMs we train a neural network, in Maximum Entropy Models the

dependency w.r.t. the parameters is linear.
▶ More flexibility in EBMs but no (trivial) maximum entropy

interpretation.

Same sampling algorithm.

62 / 63

Summary of EBMs

Advantages:

▶ Model the potential directly.
▶ Usually allows for model with less parameters than VAE, GANs or

NFs.
▶ Compositionality via Product of Experts Hinton (2002).

Problems:

▶ Training with MCMC is long. This can be avoided if we replace the

Kullback-Leibler objective with a Fisher objective (connection with

score-matching Song and Kingma (2021)).
▶ Instabilities with training Du and Mordatch (2019).
▶ Density on Rd . Usually the data is supported on a low dimensional

manifold Arbel et al. (2020).

Links with other methods:

▶ Connection with GANs Che et al. (2020).
▶ Connection with VAEs Xiao et al. (2020).
▶ Connection with score-matching Song and Kingma (2021); Gao et al.

(2020).

63 / 63

References i

References

Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized energy based models.

arXiv preprint arXiv:2003.05033, 2020.

Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan

Cao, and Yoshua Bengio. Your gan is secretly an energy-based model and you

should use discriminator driven latent sampling. Advances in Neural Information

Processing Systems, 33:12275–12287, 2020.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based

models. Advances in Neural Information Processing Systems, 32, 2019.

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning

energy-based models by diffusion recovery likelihood. arXiv preprint

arXiv:2012.08125, 2020.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence.

Neural computation, 14(8):1771–1800, 2002.

Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning

non-convergent non-persistent short-run mcmc toward energy-based model.

Advances in Neural Information Processing Systems, 32, 2019.

64 / 63

References ii

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In

International conference on machine learning, pages 1530–1538. PMLR, 2015.

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv

preprint arXiv:2101.03288, 2021.

Tijmen Tieleman. Training restricted boltzmann machines using approximations to the

likelihood gradient. In Proceedings of the 25th international conference on Machine

learning, pages 1064–1071, 2008.

Jakub M Tomczak. Latent variable models. In Deep Generative Modeling, pages

57–127. Springer, 2022.

J. Wolfowitz. The minimum distance method. Ann. Math. Statist., 28(1):75–88, 03

1957. doi: 10.1214/aoms/1177707038.

Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. Vaebm: A symbiosis

between variational autoencoders and energy-based models. arXiv preprint

arXiv:2010.00654, 2020.

65 / 63

	Introduction / Motivation
	Minimum Distance Estimation
	Maximum likelihood estimation
	Normalizing flows
	Energy-based models
	References

